Search results for "growth condition"
showing 5 items of 5 documents
On the Sets of Regularity of Solutions for a Class of Degenerate Nonlinear Elliptic Fourth-Order Equations with L1 Data
2007
We establish Holder continuity of generalized solutions of the Dirichlet problem, associated to a degenerate nonlinear fourth-order equation in an open bounded set , with data, on the subsets of where the behavior of weights and of the data is regular enough.
Existence and multiplicity of solutions for Dirichlet problems involving nonlinearities with arbitrary growth.
2014
In this article we study the existence and multiplicity of solutions for the Dirichlet problem $$\displaylines{ -\Delta_p u=\lambda f(x,u)+ \mu g(x,u)\quad\hbox{in }\Omega,\cr u=0\quad\hbox{on } \partial \Omega }$$ where $\Omega$ is a bounded domain in $\mathbb{R}^N$, $f,g:\Omega \times \mathbb{R}\to \mathbb{R}$ are Caratheodory functions, and $\lambda,\mu$ are nonnegative parameters. We impose no growth condition at $\infty$ on the nonlinearities f,g. A corollary to our main result improves an existence result recently obtained by Bonanno via a critical point theorem for $C^1$ functionals which do not satisfy the usual sequential weak lower semicontinuity property.
Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces
2015
Submitted by Alexandre Almeida (jaralmeida@ua.pt) on 2015-11-12T11:41:07Z No. of bitstreams: 1 RieszWolff_RIA.pdf: 159825 bytes, checksum: d99abdf3c874f47195619a31ff5c12c7 (MD5) Approved for entry into archive by Bella Nolasco(bellanolasco@ua.pt) on 2015-11-17T12:18:41Z (GMT) No. of bitstreams: 1 RieszWolff_RIA.pdf: 159825 bytes, checksum: d99abdf3c874f47195619a31ff5c12c7 (MD5) Made available in DSpace on 2015-11-17T12:18:41Z (GMT). No. of bitstreams: 1 RieszWolff_RIA.pdf: 159825 bytes, checksum: d99abdf3c874f47195619a31ff5c12c7 (MD5) Previous issue date: 2015-04
Quasilinear elliptic equations with singular quadratic growth terms
2011
In this paper, we deal with positive solutions for singular quasilinear problems whose model is [Formula: see text] where Ω is a bounded open set of ℝN, g ≥ 0 is a function in some Lebesgue space, and γ > 0. We prove both existence and nonexistence of solutions depending on the value of γ and on the size of g.
Quasihyperbolic boundary condition: Compactness of the inner boundary
2011
We prove that if a metric space satisfies a suitable growth condition in the quasihyperbolic metric and the Gehring–Hayman theorem in the original metric, then the inner boundary of the space is homeomorphic to the Gromov boundary. Thus, the inner boundary is compact. peerReviewed